Wyznaczanie środka odcinka

W tym temacie dowiecie się w jaki sposób znaleźć bez rysowania środek odcinka znajdującego się w układzie współrzędnych.

Aby znaleźć taki punkt oczywiście jest nam potrzebny wzór:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

Odcienk ma dwa końce A($$x_1$$,$$y_1$$) i B($$x_2$$,$$y_2$$). Punkt S jest połową odcinka. Rysując odcinek i zaznaczając na nim punkt środkowy możemy zauważyć, że zarówno na osi X jak i na osi Y jest taka sama odległość od końców odcinka. Dlatego we wzorze dzielimy sumę wartości osi x i y na dwa.

Przykład:

Znajdź współrzędne środka S odcinka AB, jeśli A(0,3) , B(1,5).
Zatem musimy zrobić to według następującego schematu:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

Pamiętamy, że nasze x i y to po prostu podane punkty, więc wszystko jest jak na dłoni. Podstawiamy:
S $$({0+1}/2;{3+5}/2)$$

I ostatecznie:
S $$(1/2;4)$$


W celu wyznaczenia jednego z końców odcinka (B), mając jego środek (S) i drugi koniec (A), wystarczy dołożyć do połowy odcinka (AS) drugą połowę (czyli też AS). W tym celu wystarczy przesunąć środek S o tyle samo, o ile jest odsunięty od punktu A. Przykładowo:

A(1,1) --- S(2,3) --- B(x,y)

Więc B(2+(2-1);3+(3-1))
Zatem B (3;5)

Zapis formalny:
$$B(x,y)$$ -> szukany punkt
$$S(x_1,y_1)$$ -> środek odcinka
$$A(x_2,y_2)$$ -> drugi punkt odcinka

$$x=x_1+x_1-x2$$
$$y=y_1+y_1-y_2$$

 

Zadania powtórzeniowe

Zadanie 1.

Znajdź współrzędne środka odcinka AB, gdzie A(-2;-1), B(-6;5).

Mamy tutaj wszystko na talerzu, zatem bierzemy nasz wzór:
S $$({x_1+x_2}/2;{y_1+y_2}/2)$$

oraz nasze punkty:
A(-2;-1)
B(-6;5)

Podmieniamy nasze zmienne na liczby:
S $$({-2-6}/2;{-1+5}/2)$$
S $$({-8}/2;4/2)$$
S $$(-4;2)$$

Zatem nasz punkt to: S $$(-4;2)$$

Zadanie 2.

Znajdź koniec B odcinka AB, jeżeli A(1;4), a S(2;7), gdzie S jest środkiem odcinka.

B(x,y) -> szukany punkt
S$$(x_1,y_1)$$ -> S(2;7), czyli $$x_1=2$$, a $$y_1=7$$
A$$(x_2,y_2)$$ -> A(1;4), czyli $$x_2=1$$, a $$y_2=4$$

$$x=x_1+x_1-x_2$$
$$y=y_1+y_1-y_2$$
$$x=2+2-1=3$$
$$y=7+7-4=14-4=10$$

Zatem punkt B(3;10).

Komentarze